
452 / MAGILSEN AND MAES

9. J. Richardson, A. Dillon, and C. McKnight, The Effect of Window Size on Reading
and Manipulating Electronic Text, in Contemporary Ergonomics 1989, E. Megaw
(ed.), Taylor & Francis, London, 1989.

10. A. Dillon, J. Richardson, and C. McKnight, The Effect of Display Size and Paragraph
Splitting on Reading Lengthy Text from Screen, Behaviour and Information Tech­
nology, 9, pp. 215-227, 1990.

11. S. de Mul, H. van Oostendorp, and T. White, Meervoudige Documentverwerking in
Meervoudige Vensters (Multiple Processing of Documents in Multiple Windows), in
Informatiewetenschap 1991, G. Kempen and P. de Vroomen (eds.), Stinfon, Nijmegen,
1991.

12. S. E. Davies, K. F. Bury, and M. J. Damell, An Experimental Comparison of a
Windowed vs. a Non-Windowed Operating System Environment, Proceedings of the
Human Factors Society 29th Annual Meeting, The Human Factors Society, Santa
Monica, California, pp. 250-254, 1985.

13. H. Hoeken, M. Mom, and A. Maes, Translating Hierarchical Instructions into Linear
Text: Depth-First versus Breadth-First Approaches, in Quality of Technical Documen­
tation, M. Steehouder, C. Jansen, P. van der Poort, and R. Verheijen (eds.), Rodopi,
Amsterdam/Atlanta, Georgia, pp. 99-113,1994.

14. P. Wright, Quality or Usability? Quality Writing Provokes Quality Reading, in Quality

of Technical Documentation, M. Steehouder, C. Jansen, P. van der Poort, and
R. Verheijen (eds.), Rodopi, Amsterdam/Atlanta, Georgia, 1994.

Other Publications On Communication By These Authors

A. Maes, S. Goutier, and E.-J. van der Linden, Online Reading and Offline Tradition.

Adapting Online Help Facilities to Offline Reading Strategies, Proceedings of
SIGDOC92, the 10th Annual International Conference on Systems Documentation,

Ottawa, Canada, pp. 175-182, 1992.
A. Maes, Language at Work, Instructive Communication and Advanced Writing, in

Proceedings of Colloquium on Business and Communication, E. Bogaert,
M. van de Velde, and A. Vermeire (eds.), AB LA, Gent, pp. 69-77, 1993.

H. Hoeken, M. Mom, and A. Maes, Translating Hierarchical Instructions into Linear Text:
Depth-First versus Breadth-First Approaches, in Quality of Technical Documenta­

tion, M. Steehouder, C. Jansen, P. van der Poort, and R. Verheijen (eds.), Rodopi,
Amsterdam/Atlanta, Georgia, pp. 99-113,1994.

Direct reprint requests to:

Dr. A. A. Maes
Letterenfaculteit KUB
PO Box 90 153
5000 LE Tilburg
The Netherlands

J. TECHNICAL WRITING AND COMMUNICATION, Vol. 26(4) 453-473,1996

THE SEQUENTIAL ORDER OF PROCEDURAL
INSTRUCTIONS: SOME FORMAL METHODS
FOR DESIGNERS OF FLOW CHARTS

CAREL J. M. JANSEN

Eindhoven University of Technology
Utrecht University

MICHAEL F. STEEHOUDER

University of Twente, Enschede

ABSTRACT

Document designers who present procedural instructions can choose several
formats: prose, table, logical tree, or flow chart. In all cases, however, it is

essential that the instructions are ordered in a way that allows users to reach
the outcome in as little time as possible. In this article two formal methods are

discussed that help determine which order is most efficient. The first method
is based on the selection principle. The second method is based on the
principle of the average least effort.

Most current literature on instructional texts focuses on "global" design issues,
such as minimalism versus elaboratism, procedural information versus declara­
tive information, and words versus graphics. Nevertheless, concerns about nar­
rower questions are still relevant. In spite of the broad research already done
in these smaller issues, many questions still have to be answered. Take for
instance questions about syntactical issues such as the effect of using passives
[1], terminology (when to use certain kinds of metaphors [2]), typeface, and
so on. In this article we focus on a topic that so far has drawn surprisingly
little attention in the professional literature on instructional texts: the sequential
ordering of instructions. The issue can nevertheless be regarded as fundamental,

453

(i:) 1996, Baywood Publishing Co., Inc.

454 I JANSEN AND STEEHOUDER

since instructional texts typically refer to actions that have to be performed
sequentially.l

It seems obvious that instructions should be presented in the order in which
they must be carried out. Instructions for a frame tent should not end with
an added note that tells the camper he should have "put the plastic caps on
the poles before putting up the roof." Such an instruction comes too late in
the day and frustrates the reader. Perhaps, this (real-life) example may seem
like an incident, but the fact that warnings often appear after the stepwise
instructions instead of before, illustrates that our point is not far-fetched.

It is not always obvious, though, what exactly the optimal order of instructions
should be: In this article we will discuss procedures where actions may be
performed in any order without affecting the effectiveness: the extent to which
users will be able to complete their tasks successfully. But, as we will show,
sometimes the order of instructions can have a dramatic effect on the efficiency

of such a procedure: the time users have to take to complete their tasks.

SOME DESIGN ALTERNATIVES

Let us explore some of the alternatives text designers can opt for in a given
situation. We use the example of an "alarm screen" that informs the user that
the system has halted (Figure 1). The instructions tell the users what to do
when this screen appears. A conventional way to draw up such an instruction
is to use "stepwise prose" (Figure 2). Another option is to use a decision table
(Figure 3). Such tables enable the users to decide what they have to do more
quickly and more accurately [5].

Many text designers might prefer the format of a logical tree or decision
tree, which shows the relationships between the possible states of the windows
and the actions to be performed (Figure 4). Logical trees were already advocated
by several authors in the sixties and seventies [6-8]. Wright and Reid showed
that users work better and more quickly with logical trees if they must solve
relatively complex problems, but that tables are to be preferred if users must
leam how to complete tasks [5].

Another alternative format is a flow chart (Figure 5). Several experiments
showed that flow charts generally are a more effective and efficient means to
solve problems than prose [9-13]. In these experiments, no sharp distinction
was made between a logical tree and a flow chart. However, there is an essential
difference between the representations in Figures 4 and 5. Figure 4 shows all
possible states of the three windows, and users must identify which state is

1 The issue of optimizing the sequential order is extensively discussed in [3] with respect to the
ordering of questions on (government) forms. Those who are interested in more detail, can order an
English translation of the relevant chapter from the authors. A short introduction to the topic is given
in [4].

PROCEDURAL INSTRUCTIONS I 455

Figure 1. Alarm screen.

If the PROGRAM window indicates TTA, look at the PROCESS window and the
ONLlNE window
• If the PROCESS window indicates OK: click PROCEED

• If the PROCESS window indicates ERROR, and the ONLlNE window indicates
YES: click WAIT

• If the PROCESS window indicates ERROR, and the ONLlNE window indicates

NO: ask your system manager for help

If the program window indicates ERG, SYS or FTW, look at the PROCESS window
and the ON LINE window
• If the PROCESS window indicates OK: click PROCEED

• If the PROCESS window indicates ERROR, and the ONLlNE window indicates
YES: click WAIT

• If the PROCESS window indicates ERROR, and the ONLlNE window indicates
NO: click RESET

Figure 2. Stepwise prose format.
'4

456 I JANSEN AND STEEHOUDER PROCEDURAL INSTRUCTIONS I 457
'1
Ii,
~~

Does the PROCESS YES

windo~~~dicate .1 click PROCEED I

If the PROGRAM and the PROCESSand the ONLlNEthen
window indicates

window indicateswindow indicates--TTA
OKYES or NOclick PROCEED

ITA

ERRORYESclick WAIT

ITA

~- ERRORNOask your system
manager for help

ERG, SYS or FWT

OKYES or NOclick PROCEED

ERG, SYS or FWT

ERRORYESclick WAIT

ERG, SYS or FWT

ERRORNOclick RESET Does the PROGRAM YES
window indicate __

TTA?

NO

,

Does the PROCESS YES

windo~~~dicate • r click PROCEED I

NO,

Does the ONLlNE

window indicate --..J click WAIT IYES? YES _.------.

NO'
I ask h-el-p-,

Figure 3. Decision table format.

I

NO,

Does the ONLlNE
window indicate

YES? YES..J click WAIT I

What does the PROGRAM window indicate?

I I

1--TT-A-' I ERG, SYS or FWr I
I

What does the PROCESS What does the PROCESS
window indicate? window indicate?

NO I
I

I click RESET

~;;

Figure 5. Flow chart format.

indicated in each window. Figure 5 shows only one state, requiring the reader
to verify whether this is the one on the screen or not. It is not completely
clear which option is the best. Although Barnard, Wright, and Wilcox found
that people completing forms answered questions more quickly and accurately
if they had alternatives in a sentence frame (l am single/married)-cf. the logi­
cal tree format-than if they consisted of yeslno questions (Are you married?)­
cf. the flow chart format-it is not clear whether this effect can be generalized to
instructions like those discussed here, where there are more than two alternatives
that are less familiar to the user.

Fow now, we will assume that there are no strong arguments in favor of
either the decision tree format or the flow chart format. For the sake of clarity,
the discussion below will be focused on flow charts, but the principles involved

can also be applied to other formats.

click
RESET

What does the ONLlNE
window indicate?

I YES I

ask click click
help PROCEED WAIT

Figure 4. Logical tree format.

click
WAIT

What does the ONLlNE
window indicate?

click
PROCEED

456 I JANSEN AND STEEHOUDER PROCEDURAL INSTRUCTIONS I 457
'1
I
A,
~~

Does the PROCESS YES

windo~~~dicate .-1 click PROCEED I

If the PROGRAM and the PROCESSand the ONLlNEthen
window indicates

window indicateswindow indicates--TTA

OKYES or NOclick PROCEED

TTA

ERRORYESclick WAIT

TTA

~- ERRORNOask your system
manager for help

ERG, SYS or FWT

OKYES or NOclick PROCEED

ERG, SYS or FWT

ERRORYESclick WAIT

ERG, SYS or FWT

ERRORNOclick RESET Does the PROGRAM YES
window indicate __

TTA?

NO

,

Does the PROCESS YES

windo~~~dicate • t click PROCEED I

NO,

Does the ONLlNE

window indicate --..J click WAIT IYES? YES _.------.

NO'I ask h-el-p-I

Figure 3. Decision table format.

I

NO,

Does the ONLlNE
window indicate

YES? YES..J click WAIT I

What does the PROGRAM window indicate?

I I

1--TT-A-' I ERG, SYS or FWr I
I

What does the PROCESS What does the PROCESS
window indicate? window indicate?

NO I
I

I click RESET

~;;

Figure 5. Flow chart format.

indicated in each window. Figure 5 shows only one state, requiring the reader
to verify whether this is the one on the screen or not. It is not completely
clear which option is the best. Although Barnard, Wright, and Wilcox found
that people completing forms answered questions more quickly and accurately
if they had alternatives in a sentence frame (l am single/married)-cf. the logi­
cal tree format-than if they consisted of yes/no questions (Are you married?)­
cf. the flow chart format-it is not clear whether this effect can be generalized to
instructions like those discussed here, where there are more than two alternatives
that are less familiar to the user.

Fow now, we will assume that there are no strong arguments in favor of
either the decision tree format or the flow chart format. For the sake of clarity,
the discussion below will be focused on flow charts, but the principles involved

can also be applied to other formats.

click
RESET

What does the ONLlNE
window indicate?

I YES I

ask click click
help PROCEED WAIT

Figure 4. Logical tree format.

click
WAIT

What does the ONLlNE
window indicate?

click
PROCEED

458 I JANSEN AND STEEHOUDER

Experiments by Holland and Rose revealed that the time readers need to
find an outcome in a flow chart is proportionally dependent on the number
of questions they must answer to get to the outcome [10]. In our example this
leads to the question whether there might be an alternative flow chart that lets
the users reach the outcome in fewer steps than required by the flow chart
in Figure 5. Such a flow chart can indeed be designed (Figure 6). Users who
have to click on PROCEED have to answer only one question in Figure 6, against
two questions in Figure 5. And users who have to click WAIT, have to pass
only two questions in Figure 6, while they have to answer three questions in
Figure 5.

THE SELECTION PRINCIPLE

Even in a simple case such as our example, finding the most efficient flow
chart could be a laborious puzzle for a technical writer. A helpful method,
though, has been developed by Wheatley and Unwin [15]. The basic idea is
that a flow chart is more efficient if the user only has to answer questions
that are absolutely necessary in deciding what to do in a given situation. We
will use our example to demonstrate the method.

Does the PROCESS

window indicate ~I click PROCEED ,OK? YES I

-------------•

PROCEDURAL INSTRUCTIONS I 459

We start by looking at the actions that the users have to perform in the end.
There are four possibilities:

1. click PROCEED,

2. click WAIT,

3. click RESET, and
4. ask for help.

We call these the outcomes of the procedure. Which outcome applies to a given
situation depends on three conditions: the status of the PROGRAM, PROCESS, and
ONLINE windows. Each condition can have the value true (yes, +) or false (no, -).
A bit of mathematics teaches us that three conditions yield 23 = 8 possible
combinations of values. These can be represented in a logic table. Each column
represents one combination of values, associated with the appropriate outcome
(Figure 7).

If we consider this table, we can easily see that columns 1 and 2 share the
same outcome and differ in only one row, that of the ONLINE window. This
means that the status of the ONLINE window turns out to be irrelevant for the
outcome in the situations presented by columns 1 and 2. If the PROGRAM window
indicates ITA and the PROCESS window indicates OK, the outcome always is click
PROCEED, whatever the status of the ONLINE window might be. When two columns
are exactly the same, except for one row, as in this case, we call them a pair
of columns.

Does the PROGRAM YES

window indicate ~ I ask help iTTA? I

NO I __ I click RESET i

NO I,
Does the ONLlNE
window indicate

YES?

NO,

YES I click WAIT
~

(j)zo
f=
Czou

PROGRAMwindow TTA?

PROCESSwindow OK?

ONLINEwindow YES?

STATES

2

345678

+

+++----
+

+--++--
+

-+-+-+-
0

0I-a.00I-I-
W

W

~
Qjww
~
w

w
w .s::;
ww en

()
() ()() w

0
0.:.!.:.!00.:.!Cl:

Cl:

Cl:.!:!fIlCl:Cl:.!:!.:.!
Cl.

11.U111
11.11.U.!:!

~
.:.! .:.!.:.! U

.!:!
.!:!.!:!

U
U UU

ACTIONS

Figure 6. Flow chart format: an alternative. Figure 7. Logical table representing conditions, states, and actions. uil

________________ •. 1

460 I JANSEN AND STEEHOUDER

FIQUr9 8. Columns 1 and 2 make up a 'pair: the ON..INE row is irT9levant.
•

+ -

+ -

+ -

1 345 8

~i f ~~
g ••.•• g~
g; ,g :; f ~

~ <J ~ 'U
13 13

+ -

13457 8

o •... Cl. 0 I- •.•.
W ;l "'i W :< ~8~~8~~
g; ~ :; f ~ 15

~ ~ <J 7J
13 13

ONUNE window yes?

PROCESS window OK?

PROGRAM window TTA?

ONUNEwindow YES?

PROCESS window OK?

PROGAAMwindawTTA.? + + + -

+ ::::~::: -

....- .

I:M45:;:8

+1+ -r
+ :.::;;;.:.:.-

:'::i>:::: -::::;t;:::: -

~ \1\\\ t ~Il\u
~ ." ~ ·· .. ··13

.............................. . .
1l s", . (\,

~i tl::III: i if ~ •• i·i~ ~
~ "1.~I:' 13 'U

ONUNE window YES?

PROCESS window OK?

PROGRAMwindow TT"?

PROCEDURAL INSTRUCTIONS I 461

ONUNE window YES?

PROCESSwindow OK?

Figure 9. Columns 5 and 6 make up a 'pair': the ONLlNE row is irrelevant.

PROGRAMwindow TT"?

Figure 10. Columns 3 and 7 make up a 'pair': the PROGRAM row is irrelevant.

verify the second condition, it is logical to start the flow chart with that one
(Figure 12).

Looking again at the fItOCESS line in Figure 11, we see that lhece is only
ODe actioa fi:J£ a trUe (+) u.udi1ioo: diek: NOaE>- We OlD pur dris actioo at
die C*I of IIIe 1'E5 KIUW'.

If rk .-xE5S .-.Joe' does .of mow (K. dae d ~ dIlee puNiJk 0lIf-
~., •• ~ 0. IIIe r-o ,. u~ •••••• a:e idi ~ Ul- .~ woe

+ -

+ + - -

.Q. ~ 51 •... ~! w w ~ .,.•• g g 15 ~=ff:u~~ ~ uu u

1345678

o •..
ill ~
~ ~•. u
15
ti

ONUNEwindow YES? +

PROCESS window OK? +

PROGRAM window TTA? + + + -

't:'::t345678

PRocess window OK? nftf\~- - + + - -

ONUNEwindow YES? • + - + - + -

~~i"\~~~~....,g. ~ fil •.•. tu

"Jll:,~!wwl'"

I'J\:I~= j j ~~

PROGRAM window TTA.? :::~:::::~:: + + - - - -

Wherever we fmd such a pair, we can simplify the table by crossing out
the irrelevant plus and minus. Two identical columns are left now (I and 2)
which makes the table redundant: one of the two can be crossed out. This

operation leads us to the table shown in Figure 8.
There is still another pair of columns, however: 5 and 6. Again the columns

are exactly the same, except for one row. When the PROGRAM window does
not indicate ITA, and the PROCESS window does indicate OK, the outcome is click
PROCEED, no matter what the ONLINE window tells us. So within these columns
the ONLINE window is irrelevant and can be crossed out (Figure 9).

The trimming of the table has not been completed yet. Figure 9 still con­
tains a pair of columns, this time with some distance between them: column
3 and column 7. We apply the same procedure to simplify the table once more
(Figure 10).

We still have not reached the end: there is still a pair of columns that enables
us to simplify the column. Columns I and 5 show that for the outcome click
PROCEED the status of the PROGRAM window is not relevant.

Figure 11 shows the final boundary. There are no more pairs of columns
and so, further simplification is not possible. Figure 11 shows that the eight
situations we started with can be reduced to no more than four different situa­

tions without loss of information. This table will be the starting point for the
second part of our operation: constructing the most efficient flow chart.

In our table only one row is completely filled with pluses and minuses: the
second one. This means that the corresponding condition (PROCESS window OK)

is the only one that must be verified in all situations. The other two conditions
need to be verified only if the PROCESS window is not OK. Since all users must

462 / JANSEN AND STEEHOUDER
PROCEDURAL INSTRUCTIONS / 463

PROCESS window OK? :::~:+.:::: __ ;:::+.:::; _

..................
::::f::; 3 4 ::::if: 8............

PROGRAM window TTA? IT
ONLlNE window YES? + -

!iit ~ ~ lilt ~
13: ~ lW

ji~~Iii

1 3 4 8

PROGRAM window TTA? + _

PROCESS window OK? +

ONUNE window YES? +

o I- ..Q. lU
w ~ CD en
w ~ .:: w

~. ~ ~ ~
~ u 'iiu

3 4 8

PROGRAM window TTA? +-

QNUNE window YES? + - -

I- .9- lU

~ .! IZ
-'< '"

~ :; ~u 13

~
,;;,;

I~
~~

Figure 11. Columns 1 and 5 make up a 'pair': the PROGRAM row is irrelevant.

Figure 13. The PROCESS rowand column 1 have been recorded in the

flow chart. After removing them, the right hand table is left over.

Does the PROCESS

window indicate .1 click PROCEEDOK? YES .-------Does the PROCESS YES

windoO~?dicate ----.J click PROCEED I

NO I,
NO I,

Does the ONLlNE
window indicate

YES?

NO,

YES.J click WAIT

Figure 12. First step in the flow chart.

start with the condition that has most pluses and minuses in its row. In this
case, it is the condition in the second row: ONUNE window YES. This is the con­
dition that we place under to the no-arrow of the flow chart. After that, it
easy to complete the flow chart in accordance with the table. The result is
shown in Figure 14, which is the same as Figure 6 on page 458.

DRAWBACKS OF THE SELECTION PRINCIPLE

The selection principle results in the most efficient flow chart for our instruc­
tional text: the number of questions that need to be answered to find the correct

outcome, is minimal. The principle's relevance is not restricted to constructing

Does the PROGRAM YES

window indicate .1 ask helpTTA? ~.-----~

NO I .1 click RESET i

Figure 14. Most efficient flow chart.

flow charts. Instructions in the stepwise prose format or the decision tree format
can also be simplified by putting the elements in the most efficient order.

One objection to the [mal flow chart might be that the order of conditions
no longer matches the order of the three windows on the. screen (program­
process-online). This might be a dilemma for the technical writer who has to
design the manual: Should the order be adjusted to the interface, or should

4

.~

464 / JANSEN AND STEEHOUDER PROCEDURAL INSTRUCTIONS / 465

THE PRINCIPLE OF AVERAGE LEAST EFFORT

Figure 16. Columns 3 and 4 make up a 'pair': pointer row is irrelevant.

i'
}

,~

f
-t:t

I ~

4

1 2 3

>- >- >-

\jj ;;: ~

::! : 15

:l! u U
"0

~ click RESET I

pointer indicates over 50 + -

PROGRAM window indicates TTA + + -

NO I,
I click WAIT I

NO

I click WAIT I

1 2 :::~:::::::,.::::

PROGRAM window indicates TTA + + :::;;;;::::::~::.

pointer indicates over 50 + -.

; 111111111

Does the PROGRAM YES Does the pointer YES
window indicate TTA? - •. indicate over 50? --

Figure 16a. Flow chart based upon Figure 16.

Now suppose that the instruction was a bit different: If the program ·PROCESS

window indicates ITA, and the pointer indicates over 50 for more than thirty
seconds, then click RESET; otherwise click WAIT.

In this case it would probably be more efficient to start by looking at the
ONLINE window, because if this does not indicate ITA, users do not have to
wait thirty seconds to verify the other condition. Even if there is only 20 percent
chance that the online window does not indicate ITA, this order would probably
save time "on average."

Below we will present a method to determine with certainty in cases like
this what the most efficient order of instructions would be.

To determine the optimal order of instructions, if the selection principle does
not work, we can benefit from the work by the educational psychologist Landa
[16]. While striving to improve the teaching of Russian grammar in secondary
schools, Landa applied the principle of the average least effort. As we will
show, this principle applies to more than just grammar teaching.

234

PROGRAM window indicates ITA

++

pointer indicates over 50

+-+
f-

f-f-f-
W ~~~(J) wa: .lo:.lo:.lo:
.lo:

.5:1.5:1.5:1

.5:1
'0'0'0'0

Figure 15. Decision table representing the new example.

a more efficient order be preferred? As a matter of fact, it turns out to be
a false dilemma. The solution is to redesign the interface according to the most
efficient order. The selection principle should not be applied by designers of
instructions only, but also by interface designers.

Another drawback might be that the method becomes very cumbersome as
the number of conditions increases. In fact, if we have n conditions, the number
of columns in our table would be 2°. What we need is a computer program
that applies the procedure automatically.

The most serious disadvantage of the selection principle, however, is that
it is not always decisive. Let us have a look at another example. Suppose that
the alarm screen of Figure 1 requires the following instruction:

If the program window indicates ITA, and the pointer of the tester indicates
more than 50, then click RESET. Otherwise click WAIT.

Following the procedure sketched above, we start with the logical table shown
in Figure 15, which can be simplified as in Figure 16. It tells us that the pro­
cedure should start by verifying the program window (Figure 16a).

But there is another possibility. Since not only columns 3 and 4 make up
a pair, but also columns 2 and 4, we can come to another simplified table
which tells us exactly the opposite: the procedure should start with verifying
the pointer! (see Figures 17 and 17a).

It is clear that the selection principle does not lead to a decision here. But
this does not mean that the order of instructions is irrelevant in such cases.

Suppose we know that when our alarm screen occurs, 80 percent of the cases
show ITA on the ONLINE window. while in 10 percent of the cases the pointer
indicates more than 50. Then it would make sense to start the procedure by
looking at the pointer. That would lead the users directly to the outcome in
90 percent of the cases (when the pointer does not indicate over 50), while
only in 10 percent will they still have to look at the program window.

- - • _ ••• - .•••••- •.• I 'U .••..., tJ I ••••L.., lVUUt:N
PROCEDURAL INSTRUCTIONS / 467

This procedure can be illustrated with a simple example. Consider an instruc­
tion of the form: If and only if A and B then do P; otherwise do Q. Two
versions of the flow chart are possible to determine whether P or Q applies
(see Figure 18).

Suppose the following data are available:

PROGRAMwindow indicates ITA

pointer indicates over 50

1 };!::,: 3 :)f;

+;;'f';;; - :;;"':;;

l"iiiii ;...,;,;',., 4)+" +..}~

iiiiJ
~ ..;~ .. ~ ••.~; ..

1 2 3

PROGRAMwindow indicates ITA +

pointer indicates over 50 + _ +

t- t- t-
~ ~ ~
~ ~ ~.- 13 0U dA =0.5

dB=0.2
tA = 3
tB= 2

~1·

I

I~
'tl
'I
~:
,;,.r

Figure 17. Columns 2 and 4 make up a 'pair': pointer row is irrelevant.

Does the pointer YES Does the PROGRAM YES

indicate over 50? --~ window indicate TTA? ---~ click RESET I

The starting assumption is that the flow chart that requires the least average
time to complete, is the most efficient. Landa deals at length with the way
in which the principle of average least effort can be applied to determine the
most efficient flow chart with two possible outcomes. We will briefly summarize
his approach here. A certain degree of abstraction in doing so is inevitable.

First of all, in applying the principle of average least effort, two key figures
are needed: distribution and time. The distribution of a condition indicates the

proportion of cases in which the condition is true. Distribution is expressed
as a number between 0 and 1. The time required for a condition is the figure
indicating how much time on average users need to implement a verification.
This can be expressed in seconds. For distribution and time, we will use the
following symbols: if C is a condition, then dC is the distribution of the verifica­
tion and tC is the time of the verification.

If the values of dC and tC are known for all conditions in a flow chart,
a calculation can be made of the average time spent on implementing the flow
chart as a whole. If there is more than one possible version of the flow chart,
the time required for each version can be determined. Comparing the results
will indicate which version is the most efficient.

[1] [2]
YES

YES YESYES
A? -.. B? -.. P B? -.. A? ____ P

NO ~

NO ~
NO INO I, ,

Q

Q QQ

Figure 18. Two versions of a flow chart with two conditions
and two possible outcomes.

The average time spent on version 1 can now be calculated as follows. All users
have to verify A. This takes an average of three seconds. In cases where A is
negative, the outcome (Q) is known and no more time is required for B. In cases
where A is positive, B has also to be verified. For 50 percent of the users an extra
two seconds must be added on. On average, therefore, an extra 0.5 * 2 seconds
is added. The total average time spent therefore is four seconds. In the same
way we can calculate that the total average time spent on version (2) is equal to
2 + (0.2 * 3) = 2.6 seconds. According to the given values of d and t, version 2
would be more efficient than version 1.

Obviously, in more complicated situations than this example it would take
much more effort to calculate what the total time spent by all users would
be for every possible flow chart. But, unfortunately, that is not necessary. Some
rather simple formulae enable the document designer to determine what the
most efficient flow chart will be according to the principle of average least
effort. We will show the derivation of these formulae.

The first formula applies to so-called conjunctive structures, the second one to
disjunctive structures. The difference between these structures is essentially this.
In a conjunctive structure, all conditions must be true for an outcome to apply,

NO

I click WAIT]

Figure 17a. Flow chart based upon Figure 17.

NO

1

I CIiCkWAT-fl

41

"00 I oJl'\l'II:>CN ANU ~ I t:t:HUUDER
PROCEDURAL INSTRUCTIONS / 469

while in a disjunctive structure it suffices if only one of the conditions is met. The
underlying rules can be shown as follows.

• conjunctive: If A andB then P (otherwise not P)

• disjunctive: If A or B then P (otherwise not P)

A conjunctive structure can be ordered in two ways (Figure 19). If we start
with condition A (left), the average time required to solve the problems is tA +
dA *tB. If we start with B (right), the average time is tB + dB*tA. The most
efficient order is that requiring the least average time.

If we use t(A, B) as the average time needed to solve the problem when starting
with A, and if we use t(B, A) as the average time needed when starting with B, then
the left version is more efficient than the right one if, and only if:

t(A,B) < t(B,A)

[1] [2]
YES

YES
A? ~p

B?~ P

NO I

NO I, ,
YES

YES
B? ~p

A?~ P

NO I

NO ~, Q

Q

<=> tA + dA*tB < tB + dB*tA

Now the numerators and denominators can be divided by tA, and tB respectively:

<=> tA - dB*tA < tB - dA*tB

Since tA > 0 and tB > 0, both sides can be divided by tA *tB:

tA - dB*tA tB - dA*tB<=> ---- < ----
tA*tB tA*tB

1-dAI-dB<=> -->--
tA tB-
[1]

[2]
YES

YES YESYES
A? -~ B? --~ P B? ----.. A? ___ P

t(A,B) < t(B,A)

tA + (1 - dA)*tB < tB + (1 - dB)*tA

Figure 20. Two versions of a disjunctive structure.

The conclusion is that, if two conditions both have to be true to ensure a

specific outcome, the most efficient flow chart starts with the condition for

which 1 - d is at its maximum. In other words, if a procedure has a conjunctivet
structure, it should start by mentioning the condition that probably will apply
to the smallest part of the readers (maximum J -d), and that will take the average
reader the shortest time to verify (minimum t). If the condition with the smallest

d . I h d' .. h h I th . 1 - dA d 1 - dB haIS a so t e con ItIon Wit t e argest t, e quotIents ~ an ~ ve

to be calculated and compared.
In a disjunctive structure, just as in a conjunctive structure, the conditions can

be ordered in two ways (Figure 20). If we start with the condition A (left) the
average time required to solve the problem will be tA + (J - dA)*tB. If we start
with B (right), the average time will be tB + (J - dB)*tA. If we use teA, B)
as the average time needed to solve the problem when starting with A, and if we
use t(B, A) as the average time needed when starting with B, then the left version
will be more efficient than the right one if, and only if:

<=>

NO I,
Q

NO I,
QQ

NO ~
NO I,

Q

<=> I-dB 1-dA--<---
tB tA

And finally, the direction of the < can be changed:

Figure 19. Two versions of a conjunctive structure.
<=> tA - (1 - dB)*tA < tB + (1 - dA)*tB

470 / JANSEN AND STEEHOUDER PROCEDURAL INSTRUCTIONS / 471

The conclusion here is that, if one out of two conditions has to be true to ensure
a specific outcome, the most efficient flow chart begins with the condition for

which Q is at its maximum. In other words, if a procedure has a disjunctivet
structure, the instruction should start by mentioning the condition that probably
will apply to the largest number of readers (maximum d), and that will take the
average reader the shortest time to verify (minimum t). If the condition with the

largest d is also the condition with the largest t, the quotients ~ and ':: have to

be calculated and compared.
So far, we have only looked at cases that involve two conditions. Often,

however, document designers must deal with (many) more than two conditions.
If all these conditions are linked conjunctively (A and B and C and ... and
N) or disjunctively (A or B or C or ... or N), the formulae set out above
still apply. Where there is a mixed structure, with both conjunctions and dis­
junctions, the most efficient flow chart can be developed from bottom to top
(for illustrations and examples, see [3]).

A logic table with two outcomes can always be rewritten as a formula like
the ones above. Thus, in principle, it is possible to determine the most efficient
flow chart for each table by calculating the formula outcome.

Does the principle of average least effort always lead to the optimal order
of instructions? In the procedure outlined above, it was assumed that the values
of tC and dC are known for each condition. In practice, however, document
designers not always have the relevant values at hand. It is more often exception
than rule that statistics are available from which all d-values can be derived.

In addition, t-values can only be determined by means of empirical testing.
Often there is insufficient time and resources for studies of this nature.

Fortunately, it is not always necessary to know the d- and t-values exactly.
Often, it is sufficient to know their mutual relationships and to know whether
these can have any effect on the determination of the sequential order. In many
cases, t-values can be considered as equal. For instance, time differences for
verifying information on the screen can be neglected in practice. In such cases

<=>

<=>

<=>

tA - (1 - dB)*tA < tB - (1 - dA)*tB (tA > 0 and tB > 0)tA*tB tA*tB

dB dA-<­
tB tA

dA dB->­
tA tB

frequency figures are usually the only criteria to be considered in determining
the optimal order.

CONCLUSION

We have tried to show that document designers who want to find the most
efficient order of instructions, do not always have to reinvent the wheel. If
the instructions at hand lead to two possible outcomes, the principle of

average least effort can be a very helpful tool. If there are more than two pos­
sible outcomes, applying the selection principle is effective. However, it is also
clear that in complex situations, the practical implementation of either principle
can be rather time-consuming. It would be regrettable, though, if that were
to restrain text designers from using these principles to improve their products.
In many technical documents, putting the instructions in the right order means
working on the essence of the message. If that takes designers some more
time than their other writing tasks, it indicates only that they have gotten their

priorities right.

ACKNOWLEDGMENTS

We thank Karen A. Schriver and Michael V. Sharp for providing useful com­
ments on earlier drafts of this article.

REFERENCES

1. L. Cornelis, The Passive Voice in Computer Manuals: A New Perspective, Journal

of Technical Writing and Communication, 25, pp. 285-301,1995.
2. M. Mulder, Perception of Anthropomorphistic Expressions in Software Manuals, (this

issue), pp. 489-506, 1996.
3. C. J. M. Jansen and M. F. Steehouder, Taalverkeersproblemen tussen overheid en

burger. Een onderzoek naar verbeteringsmogelijkheden van voorlichtingsteksten en

formulieren, (Communication Problems between Government and Citizens, A Study
into Techniques for Improving the Quality of Instructional Texts and Forms (with a
summary in English), SDU Uitgeverij, The Hague, 1989.

4. M. Steehouder and C. Jansen, Optimizing the Quality of Forms, in Studies of Func­

tional Text Quality, H. Pander Maat and M. Steehouder (eds.), Editions Rodopi,
Amsterdam/Atlanta, Georgia, pp. 159-172,1992.

5. P. Wright and F. Reid, Written Information: Some Alternatives to Prose for Express­

ing the Outcomes of Complex Contingencies, Journal of Applied Linguistics, 57,
pp. 160-166, 1973.

6. B. N. Lewis, I. S. Horabin, and C. P. Gane, Case Studies in the Use of Algorithms,

Pergamon Press, London, 1%7.
7. E. Berry, How to Get Users to Follow Procedures? IEEE Transactions on Professional

Communication, 25, pp. 22-25, 1982.

472 / JANSEN AND STEEHOUDER

8. I. Horabin and B. Lewis, Algorithms, The Instructional Design Library, Vol. 2,
Englewoods Cliffs, New Jersey, 1978.

9. R. Kamman, The Comprehensibility of Printed Instructions and the Flow Chart Alter­
native, Human Factors, /7, pp. 183-191, 1975.

10. V. M. Holland and A. Rose, A Comparison of Prose and Algorithms for Presenting

Complex Instructions, American Institutes for Research, Washington, 1981.
11. G. S. Krohn: Flow Charts Used for Procedural Instructions, Human Factors, 25,

pp. 573-581,1983.
12. M. Lagendijk-Swartbol and J. Driessens, Presentatievormen voor handleidingen. Een

toepassing voor de Telemix 5/2, (Design of User Instructions: An Application for the
Telemix 512), master's thesis, Utrecht University, 1987.

13. C. Jansen and M. Steehouder, Improving the Text of a Public Leaflet, Information
Design Journal, 4, pp. 10-18, 1984.

14. P. Bamard, P. Wright, and P. Wilcox, Effects of Response Instruction and Question
Style on the Ease of Completing Forms, Journal of Occupational Psychology, 52,
pp. 209-226, 1979.

15. D. M. Wheatley and A. W. Unwin, The Algorithm Writers Guide, Longman, London,
1972:

16. L. N. Landa, Algorithmization in Learning and Instruction, Educational Technology
Publishers, Englewood Cliffs, 1974.

Other Articles On Communication By These Authors

C. Jansen and M. Steehouder, Improving the Text of a Public Leaflet, Information Design
Journal, 4, pp. 10-18, 1984.

C. J. M. Jansen, M. F. Steehouder, A. Pilot, D. Schrauwen, and P. J. M. Looijmans, ALEXIS:

Computer-Assisted Feedback on Written Assignments, Computer and Composition, 4,
pp. 32-45, 1986.

M. Steehouder and C. Jansen, From Bureaucratic Language to Instructional Texts: How to
Design an Effective Problem-Solving Tool for Citizens, Information Design Journal,
5,pp. 129-139, 1987.

C. Jansen and M. Steehouder, Forms as a Source of Communication Problems, Journal of
Technical Writing and Communication, 22, pp. 179-194, 1992.

M. Steehouder, The Quality of Access: Helping Users Find Information in Documentation,
in Quality of Technical Documentation, M. Steehouder, C. Jansen, P. van der Poort,
and R. Verheijen (eds.), Editions Rodopi, Amsterdam/Atlanta, Georgia. Utrecht
Studies in Language and Communication, Vol. 3, pp. 131-144, 1994.

C. Jansen, Computerised Writing Aids: Do They Really Help?, in Quality of Technical

Documentation, M. Steehouder, C. Jansen, P. van der Poort, and R. Verheijen (eds.),

Editions Rodopi, Amsterdam/Atlanta, Georgia, Utrecht Studies in Language and
Communication, Vol. 3, pp. 239-248, 1994.

M. Steehouder and C. Jansen, Issues in Developing an On line Advisory System for
Text Writers, Journal of Technical Writing and Communication, 24, pp. 137-146,
1994.

C. Jansen, Research in Technical Communication in the Netherlands, Technical Com­

munication, 41, pp. 234-239, 1994.

PROCEDURAL INSTRUCTIONS / 473

M. Steehouder and C. Jansen, Optimizing the Quality of Forms, in Studies of Functional

Text Quality, H. Pander Maat and M. Steehouder (eds.), Editions Rodopi, Amsterdam/
Atlanta, Georgia, pp. 159-172, 1992.

Direct reprint requests to:

Michael F. Steehouder

University of 1\ventelWMW
p.a. Box 217
7500 AE Enschede
The Netherlands
Tel. ++31 53 4893315
E-mail: M.F.Steehouder@WMW.Utwente.NL

